Analysis of Linear Control Systems

Topics:
• Properties of linear dynamic systems
• Time-domain analysis of linear systems
• Numerical simulation of linear system
• Root-locus of linear systems
• Frequency-domain analysis of linear systems
• Introduction to model Reduction techniques
Properties of linear dynamic systems

• Linear systems obey the superposition principle
• Stability analysis
 – Bounded-input bounded-output (BIBO) stability
 • A system is stable if all its poles have negative real-parts
 – Poles are the roots of the denominator of the system’s transfer function $G(s)$
 – Zeros (transmission zeros) are the roots of the numerator of the system’s transfer function $G(s)$
 • Poles on the imaginary axis with multiplicity one are critically stable
 • Poles on the imaginary axis with multiplicity more than one are unstable
• Matlab commands
 • Find system poles using commands `pole()` and `eig()`
 • Find system zeros using command `zero()`
 • Sketch system’s poles and zeros using command `pzmap()`
 • Use command `isstable()` to check system’s stability, returns 1=stable, 0=unstable

Example: Check the stability of system $G(s) = \frac{s^3 + 7s^2 + 24s + 24}{s^4 + 10s^3 + 35s^2 + 50s + 24}$

```matlab
>> G=tf([1,7,24,24],[1,10,35,50,24]); eig(G); pzmap(G);
Or
>> s=tf('s'); G=(s^3+7*s^2+24*s+24)/(s^4+10*s^3+35*s^2+50*s+24); isstable(G);
```
Properties of linear dynamic systems ...

Internal stability

• The system shown is internally stable iff:
 1) The transfer function of $1+H(s)G(s)G_c(s)$ has no zeros in RHP
 2) The loop transfer function $H(s)G(s)G_c(s)$ has no pole-zero cancellation in RHP

Matlab command: `intstable()`

– Syntax: `[V,c]=intstable(G,Gc,H);`
 • If system is internally stable, $V=0$ and c is empty
 • If system is I/O unstable, $V=1$ and c holds the unstable closed-loop poles
 • If system is I/O stable, but not internally stable, $V=2$ and c holds the cancelled unstable poles

– Matlab command `minreal()` gives the simplified transfer function, after pole-zero cancellation, which may not be internally stable
Controllability and observability analysis

• Controllability:
 • The state $x_i(t)$ is said to be controllable if there exists an input that in finite time can drive it to any specified value $x_i(t_f)$ from the initial value $x_i(0)$
 • The system is fully controllable if all its states are controllable
 – Full controllability of the system depends on the A and B matrices of its state-space model
 • An nth-order system is fully controllable if its controllability matrix $T_c=[B, AB, ..., A^{n-1}B]$ has full rank

Matlab commands: `ctrb()`, `ctrbf()`, `rank()`
 – $T_c=ctrb(A,B)$; returns the controllability matrix T_c
 – $[Ac,Bc,Cc,Tc]=ctrbf(A,B,C)$; returns the equivalent state-space matrices (Ac,Bc,Cc) in the stair-case form $A_c = \begin{bmatrix} \hat{A}_c & 0 \\ \hat{A}_{21} & \hat{A}_c \end{bmatrix}$, $B_c = \begin{bmatrix} 0 \\ \hat{B}_c \end{bmatrix}$, $C_c = [\hat{C}_c \quad \hat{C}_c]$, where $(\hat{A}_c, \hat{B}_c, \hat{C}_c)$ represent the controllable subsystem $G(s) = \hat{C}_c(sI - \hat{A}_c)^{-1}\hat{B}_c + D$
 – `rank(Tc)`; generates the rank of the matrix T_c
Properties of linear dynamic systems ...

- **Observability**
 - The state $x_i(t)$ is said to be observable if for any $t_f > 0$, the initial state $x_i(0)$ can be determined from the time history of the input $u(t)$ and output $y(t)$ in the interval $[0,t_f]$.
 - The system is fully observable if all system states are observable.
 - Full observability of the system depends on the A and C matrices of its state-space model.
 - An nth-order system is fully observable if its observability matrix $T_o = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$ has full rank.
 - Dual of controllability.

Matlab commands: obsv(), obsvf()

- $To=obsv(A,C)$; returns the observability matrix T_o.
- $[Ao,Bo,Co,To]=obsvf(A,B,C)$; returns the equivalent state-space matrices (Ao,Bo,Co) in the stair-case form $A_o = \begin{bmatrix} \hat{A}_o & \hat{A}_{12} \\ 0 & \hat{A}_o \end{bmatrix}$, $B_o = \begin{bmatrix} \hat{B}_o \\ \hat{B}_o \end{bmatrix}$, $C_o = [0 \quad \hat{C}_o]$, where Ao, Bo, Co represent the observable subsystem $G(s) = \hat{C}_o(sI - \hat{A}_o)^{-1}\hat{B}_o + D$.

Properties of linear dynamic systems ...

Controllability and observability Gramians

- Controllability and observability Gramians W_c and W_o show how controllable and observable a system is, where $W_c = \int_0^{\infty} e^{At}BB^Te^{At^T}dt$ and $W_o = \int_0^{\infty} e^{At}C^TCe^{At}dt$
 - W_c and W_o satisfy the Lyapunov equations $AW_c + W_cA^T = -BB^T$ and $A^TW_o + W_oA = -C^TC$
 - W_c and W_o are positive definite if and only if (A,B) is controllable and (A,C) is observable
 - The singular values of W_c indicate the contribution of the input signal to each state
 - The singular values of W_o indicate the contribution of each state to the output signal

Matlab commands: `lyap()`, `svd()`, `gram()`

- W_c=lyap(A,B*B'); returns the controllability Gramian matrix W_c
- W_o=lyap(A',C'*C); returns the observability Gramian matrix W_o
- $[U,S,V]=svd(Wc); produces a diagonal matrix S, of the same dimension as W_c and with nonnegative diagonal elements in decreasing order, and unitary matrices U and V so that $W_c = U*S*V'$
- $W=$gram(G,type); returns the gramian matrix W for a system with state-space model G, where type is ‘c’ or ‘o’ for controllability or observability Gramians
Properties of linear dynamic systems ...

Other Matlab commands:

- `kalmdec();` produces Kalman decomposition of a given system
- `timmomt();` produces time moments M_i of a given system, where $M_i = \int_0^\infty t^i g(t)dt$, and $g(t)$ is the impulse response of the system $G(s)$
- `markovp();` produces the Markov parameters d_i of a given system, where $d_0 = CB + D$ and $d_i = CA^iB$, $i=1,2,...$

Norm measures of signals and systems

- Norm measures of signals

 - L_p-norm defines the size of a signal $u(t)$ as $\|u(t)\|_p = (\int_{-\infty}^{\infty} |u(t)|^p dt)^{1/p}$, where p is a positive integer

 \begin{itemize}
 \item The $L1$-norm is $\|u(t)\|_1 = \int_{-\infty}^{\infty} |u(t)|dt$
 \item The $L2$-norm is $\|u(t)\|_2 = (\int_{-\infty}^{\infty} |u(t)|^2 dt)^{1/2}$, (the measure of signal power)
 \item The $L\infty$-norm is $\|u(t)\|_\infty = \sup_t |u(t)|$, (the least upper-bound of $|u(t)|$)
 \end{itemize}
Properties of linear dynamic systems ...

Norm measures of systems

• The size of a system $G(s)$ is generally measured in H_2-norm and H_∞-norm

 – The H_2-norm is $\|G(s)\|_2 = \left(\frac{1}{2\pi} \int_{-j\infty}^{j\infty} |G(j\omega)|^2 d\omega \right)^{1/2} = \left(\int_0^{\infty} tr(g(t)^T g(t)) dt \right)^{1/2}$

 – (square-root of the integral-squared of the impulse-response $g(t)$ of the system)

 – The H_∞-norm is $\|G(s)\|_\infty = \sup_{u(t) \neq 0} \frac{\|y(t)\|_2}{\|u(t)\|_2} = \sup_{\omega} |G(j\omega)|$

 – (peak-value of the magnitude of the frequency-response of the system)

• Properties of L and H norms:

 – $\|y(t)\|_2 \leq \|G(s)\|_\infty \|u(t)\|_2$
 – $\|y(t)\|_\infty \leq \|G(s)\|_2 \|u(t)\|_\infty$
 – $\|G_1(s)G_2(s)\|_\infty \leq \|G_1(s)\|_\infty \|G_2(s)\|_\infty$

Matlab command: \texttt{norm()}

– \texttt{norm(X,P)}; X is a matrix, P is norm type 1, 2, inf, fro (Frobenius)
– \texttt{norm(V,P)}; V is a vector, P is norm type (1, 2, ..., inf (max), and $-\inf$ (min))
– \texttt{norm(G)}; H_2-norm of $G(s)$
– \texttt{norm(G,inf)}; H_∞-norm of $G(s)$
Time-Domain Analysis of Linear Systems

Analytical solutions to continuous-time responses

- Consider the system \(\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases} \), with initial condition \(x(0) = x_0 \)
 - The system response to an arbitrary input \(u(t) \), for \(t \geq 0 \), is:
 \[
 \begin{align*}
 x(t) &= e^{At} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \\
 y(t) &= C \left(e^{At} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau \right) + Du(t)
 \end{align*}
 \]
 - Laplace transform of the solution is:
 \[
 \begin{align*}
 X(s) &= (sI - A)^{-1} (x(0) + BU(s)) \\
 Y(s) &= C (sI - A)^{-1} (x(0) + BU(s)) + DU(s)
 \end{align*}
 \]

Analytical solutions to discrete-time responses

- Consider the system \(\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases} \), with sample-time \(T \) and \(x(0) = x_0 \)
 - The system response to a sampled arbitrary input \(u(k) \), for \(k = 0,1,2,... \), is:
 \[
 \begin{align*}
 x(k+1) &= e^{AT} x(k) + \int_0^T e^{AT} B d\tau \ u(k) \\
 y(k) &= C \left(e^{AT} x(k) + \int_0^T e^{AT} B d\tau \ u(k) \right) + Du(k)
 \end{align*}
 \]
 where \(y(k) = \delta^{-1}(G(z)U(z)) \)
Second-order system analysis

Consider a second-order linear system $G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2}$

The step response of the system is:

1. If $\zeta = 0$, $y(t) = 1 - \cos(\omega_n t)$
2. If $0 < \zeta < 1$, $y(t) = 1 - e^{-\zeta \omega_n t} \frac{1}{\sqrt{1-\zeta^2}} \sin(\omega_d t + \theta)$

 where $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ and $\theta = \tan^{-1} \frac{\sqrt{1-\zeta^2}}{\zeta}$

3. If $\zeta = 1$, $y(t) = 1 - (1 + \omega_n t) e^{-\omega_n t}$
4. If $\zeta > 1$, $y(t) = 1 - \frac{\omega_n}{2\sqrt{\zeta^2 - 1}} \left(\frac{e^{\lambda_1 t}}{\lambda_1} - \frac{e^{\lambda_2 t}}{\lambda_2} \right)$

 where $\lambda_1 = -\zeta - \sqrt{\zeta^2 - 1} \quad$ and $\lambda_2 = -\zeta + \sqrt{\zeta^2 - 1}$

More concisely:

- if $\zeta \neq 1$, $y(t) = 1 - \omega_n e^{-\zeta \omega_n t} \left(\frac{\cosh(\omega_d t)}{\omega_n} - \frac{\zeta \sinh(\omega_d t)}{\omega_d} \right)$
Numerical Simulation of Linear Systems

Qualitative specifications in step responses

- Second-order linear system \(G(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \)
 - Specifications of the step response (shown):
 - Steady-state value, \(y_{ss} \): \(y_{ss} = \lim_{s \to 0} sG(s) \frac{1}{s} = G(0) \)
 - Rise-time, \(t_r \): the time for the response to go from 10% to 90% of \(y_{ss} \)
 - Settling-time, \(t_s \): the time when \(y(t) \) enters and stays in the range \(y_{ss} \pm \Delta y \)
 - Overshoot (maximum peak), \(M_p \): percent overshoot \(M_p = \frac{y_{max} - y_{ss}}{y_{ss}} \times 100\% \)

Matlab commands: `step()`, `dcgain()`, `impulse()`, `lsim()`, `grid`

- `step(G)`: draws the step response of \(G(s) \)
- `[y,t]=step(G)`: evaluate the step response of \(G(s) \) and not draw it
- `K=dcgain(G)`: calculate the steady state value \(y_{ss} \) of the output \(y(t) \)
- `impulse(G)`: draw the impulse response of \(G(s) \)
- `lsim(G,u,t)`: draw the response of \(G(s) \) to an arbitrary input \(u(t) \)
- `grid`: superimpose a grid on the plot
Root Locus of Linear Systems

Unity feedback system
• Sketch the location of closed-loop poles
 – Roots location of $1 + KG(s) = 0$, where $-\infty < K < \infty$

Matlab commands: \texttt{rlocus()}, \texttt{grid}
– \texttt{rlocus(G)}; draws the root locus
– \texttt{rlocus(G,K)}; draw root-locus for a given gain vector \(K \)
– \texttt{[R,K]=rlocus(G)}; evaluate the closed-loop pole location \(R \), not draw
– \texttt{rlocus(G1,’-’,G2,’-’.b’G3,’:r’)}; draw root-locus for several models

• Example: Draw the root-locus, where \(G(s) = \frac{s^2+4s+8}{s^5+18s^4+120.3s^3+357.7s^2+478.5s+306} \)

\[
\begin{align*}
& \text{num}=[1,4,8]; \text{den}=[1,18,120.3,375.5,478.5,306]; \\
& G=tf(\text{num},\text{den}); \text{rlocus}(G); \\
& \quad \text{Right click on the jw-axis crossing} \\
& \quad \quad \text{Critical gain } k\approx 781
\end{align*}
\]
Frequency-Domain Analysis of Linear Systems

Frequency-domain plots of $G(s)$, $s=j\omega$

- Real and imaginary part representation
 \[G(j\omega) = P(\omega) + jQ(\omega) \]
 - Nyquist plot draws $Q(\omega) = \text{Im}(G(j\omega))$ v. $P(\omega) = \text{Re}(G(j\omega))$

- Magnitude and Phase representation in separate plots
 \[G(j\omega) = A(\omega)e^{-j\phi(\omega)} \]
 - Bode plot draws the magnitude in decibels ($M(\omega) = 20\log(A(\omega))$) and phase in degrees versus the frequency in log scale

- Magnitude and Phase representation in a single plot
 \[G(j\omega) = A(\omega)e^{-j\phi(\omega)} \]
 - Nichols chart draws the magnitude versus phase

Matlab commands: \texttt{nyquist, bode()}, \texttt{nichols()},

- \texttt{nyquist(G)}; draws the Nyquist plot
- \texttt{[R,I,K]=nyquist(G)}; evaluate the Nyquist data, not draw
- \texttt{bode(G)}; draw the Bode plot of $G(s)$
- \texttt{[A,\phi,\omega]=bode(G)}; evaluate the Bode data, not draw
- \texttt{nichols(G)}; draw the Nichols chart of $G(s)$
- \texttt{[A,\phi,\omega]=bode(G)}; evaluate the Nichols data, not draw
Example: Draw the Bode plot, Nyquist plot and Nichols chart for

\[G(s) = \frac{s+8}{s(s^2+0.2s+4)(s+1)(s+3)} \]

Matlab code:

```matlab
close all; s=tf('s'); G=(s+8)/(s*(s^2+0.2*s+4)*(s+1)*(s+3));
figure(1), bode(G);
figure(2), nyquist(G); set(gca,'Ylim',[-1.5,1.5]);
figure(3), nichols(G); set(gca,'Xlim',[-400,-100], 'Ylim',[-100,30]);
```

You may right-click on any of the figures and modify its properties (labels, limits, units, style, etc).
Stability analysis in frequency-domain

- The closed-loop system is stable if:
 - The Nyquist plot of $G(s)$ encircles (counter-clockwise) the point (-1+0j) as many times as the number of RHP poles of $G(s)$

- **Example:** For $G(s) = \frac{2.7778(s^2+0.192s+1.92)}{s(s+1)^2(s^2+0.384s+2.56)}$ is the closed-loop system stable?

Matlab code:
```
s=tf('s');
G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56));
figure(1), nyquist(G); axis([-2.5,0,-1.5,1.5]); grid;
figure(2), nyquist(G); axis([-1.2,-0.8,-0.2,0.2]); grid;
figure(3), step(feedback(G,1,-1));
```

Stable, but too oscillatory!
Gain and phase margins of a system

- **Gain margin:** \(G_m = \frac{1}{A(\omega_{cg})} \)
 - \(A(\omega_{cg}) \) and \(\omega_{cg} \) are the magnitude and frequency where the Nyquist plot intersects the negative real-axis
 - The smaller the gain-margin, the faster the closed-loop system response
 - If \(G_m < 1 \), the closed-loop system is unstable

- **Phase margin:** \(P_m = \phi(\omega_{cp}) + 180 \)
 - \(\phi(\omega_{cp}) \) and \(\omega_{cp} \) are the phase and frequency where the Nyquist plot intersects the unit circle
 - The larger the phase-margin, the less overshoot in closed-loop system response
 - If \(P_m < 0 \), the closed-loop system is unstable

- **Example:** For \(G(s) = \frac{2.7778(s^2+0.192s+1.92)}{s(s+1)^2(s^2+0.384s+2.56)} \) find the closed-loop system margins

 Matlab code:
  ```matlab
  s=tf('s'); G=2.7778*(s^2+0.192*s+1.92)/(s*(s+1)^2*(s^2+0.384*s+2.56));
  [gm,pm,wg,wp]=margin(G);
  ⇒ gm = 1.1050; pm = 2.0985; wg = 0.9621; wp = 0.9261 (closed-loop is stable)
  ```
Introduction to Model Reduction Techniques

• Pade approximation to delay terms
 – A delay term $e^{-\tau s}$ can be approximated as rational transfer functions $\frac{n_p(s)}{d_p(s)}$

Matlab Command: pade()

– Syntax: [np,dp]=pade(τ,n); where n is the order of the Pade approximation

• Example: Find the Pade approximation of a pure delay $G(s) = e^{-s}$

Matlab code:

\[
\begin{align*}
\text{tau}=1; \\
[n1,d1]=\text{pade}(\text{tau},3); \ G1=\text{tf}(n1,d1); \ % \ 3^{rd}-\text{order Pade approx} \\
[n2,d2]=\text{pade}(\text{tau},6); \ G2=\text{tf}(n2,d2); \ % \ 5^{th}-\text{order Pade approx} \\
[n3,d3]=\text{pade}(\text{tau},9); \ G3=\text{tf}(n3,d3); \ % \ 7^{th}-\text{order Pade approx} \\
\text{step}(G1,'-g',G2,'-b',G3,'r'); \ % \text{Compare plots} \\
\text{line}([0,1,1+\text{eps},3],[0,0,1,1]); \ % \text{The step plot}
\end{align*}
\]
Introduction to Model Reduction Techniques

State space model reduction

- **Balanced realization method:**
 1) Given a system model, find its unique balanced realization, where the controllability and observability Gramians are equal ($W = W_c = W_o$)
 2) Partition the balanced realization and eliminate the states with small Gramians

Matlab Command: `balreal()`, `modred()`

Example: For $G(s) = \frac{s^3 + 7s^2 + 24s + 24}{s^4 + 10s^3 + 35s^2 + 50s + 24}$ find a 2nd-order approximate model

Matlab code:
```
num=[1,7,24,24]; den=[1,10,35,50,24];
G=tf(num,den); [Gb,g,T]=balreal(ss(G));
Gr=modred(Gb,[3,4]); zpk(Gr),
figure(1), bode(G,Gr), grid;
figure(2), step(G,Gr);
```

$G_r(s) = \frac{0.025974(s+22.36)(s+4.307)}{(s+1.078)(s+2.319)}$
Introduction to Model Reduction Techniques

State space model reduction

- **Schur’s balanced realization truncation method:**
 - Similar to modred(), but can handle unstable systems
- **Optimal Hankel norm approximation**
 - Based on Hankel norm optimization technique

Matlab Commands: `schmr()`, `ohklmr()`

Example: Find a 3rd-order approximate model for

\[
G(s) = \frac{68.6131s^5 + 80.3787s^4 + 67.087s^3 + 29.9339s^2 + 8.8818s + 1}{0.0462s^6 + 3.5338s^5 + 16.5609s^4 + 28.4472s^3 + 21.7611s^2 + 7.6194s + 1}
\]

Matlab code:

```
num=[68.6131,80.3787,67.087,29.9339,8.8818,1];
den=[0.0462,3.5338,16.5609,28.4472,21.7611,7.6194,1];
G=ss(tf(num,den)); [Gb,g,T]=balreal(G);
Gr=modred(Gb,[4,5,6]); zpk(Gr),
Gs=schmr(G,1,3); zpk(Gs),
Gh=ohklmr(G,1,3); zpk(Gh),
figure(1), bode(G,Gr, '-g',Gs, '-b',Gh,':r'); grid;
figure(2), step(G,Gr, '-g',Gs, '-b',Gh,':r');
```

\[
G_R(s) = \frac{-0.28747(s-5398)(s^2+0.3576s+0.2519)}{(s+76.48)(s^2+3.853s+5.1111)}
\]

\[
G_S(s) = \frac{1485.3076(s^2+0.17895s+0.2601)}{(s+71.64)(s^2+3.881s+4.188)}
\]

\[
G_h(s) = \frac{1527.8048(s^2+0.2764s+0.2892)}{(s+73.93)(s^2+3.855s+4.585)}
\]